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Abstract 12 

Experimental competitive adsorption isotherms were successfully determined directly from overloaded 13 

elution profiles in gradient elution mode using an extended inverse method. This approach differs from 14 

the existing methods in one important aspect – no isocratic experiments are necessary which makes it 15 

possible to study adsorption of substances whose retention factors vary strongly with the mobile-phase 16 

composition. The approach was verified with simulated binary data and with experimental data from 17 

gradient separations of a cyclohexanone/cycloheptanone mixture. For the synthetic data, the original 18 

adsorption isotherm parameters were found using a two-step estimation procedure. In the first step 19 
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analytical peaks were used to estimate the “analytical” part of the Langmuir equation and in the second 20 

step the association equilibrium parameters were estimated from two simulated overloaded elution 21 

profiles. 22 

For the experimental data, a three-step approach was used. The two first steps were used to reduce the 23 

calculation time so that parameter estimation could be performed on an ordinary computer. In the first 24 

step, analytical peaks were used to estimate the “analytical” part of the bi-Langmuir equation. In the 25 

second step, initial guesses for all other parameters were determined separately for each solute using 26 

the faster Rouchon algorithm. In the final and third step, the more accurate orthogonal collocation on 27 

finite elements algorithm, was used to fine-tune the isotherm parameters. The model could accurately 28 

predict the shape of overloaded elution profiles. The shape of the adsorption isotherms agreed well with 29 

those determined with the standard isocratic method, although the numerical values were not the same. 30 

The extended inverse method is well suited for process optimization where few experiments and 31 

accurate predictions are important. 32 

Keywords: RPLC; Gradient elution; Inverse method; Competitive adsorption isotherm 33 

1 Introduction 34 

Gradient elution is extremely important in analytical liquid chromatography but is used to a lesser extent 35 

in preparative liquid chromatography. Of all studies published based on the theory for band migration 36 

and adsorption in overloaded chromatography [1] only a few concerns non-isocratic gradient conditions. 37 

But these few studies shows the great potential for calculating optimal conditions for preparative 38 

gradient chromatography both in batch separation [2–8] and in simulated moving bed [9,10]. 39 
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A necessary step in numeric process optimization is estimation of the competitive adsorption isotherms 40 

[1]. Although well-developed optimization routines exist for gradient elution [5–8], it is tedious to 41 

determine the nonlinear adsorption isotherms in this mode, especially when the feed is a mixture of two 42 

or more solutes [8,11–18]. In gradient elution the adsorption isotherms are first estimated using isocratic 43 

experiments for several different fractions of modifier in the eluent, here the adsorption isotherm model 44 

is assumed to be independent of the fraction of modifier used and the modifier only affects the 45 

adsorption isotherm parameters. Then a function that describes the variation of the adsorption isotherm 46 

parameters with the modifier fraction must be determined. This “classical approach”, where the 47 

adsorption isotherms are determined with isocratic experiments on different mobile-phase plateaus, can 48 

lead to extreme retention times for some mobile-phase compositions and therefore it might even be 49 

impossible to determine all necessary adsorption data. 50 

The inverse method is a fast method for the estimation of competitive adsorption isotherms [19–22], but 51 

to our knowledge it has only been used for isocratic elution. In order to use the “classical” version of the 52 

inverse method in gradient elution mode one would need to perform fraction analysis and peak 53 

deconvolution [23]. In a previous fundamental “proof-of concept” study, we developed and verified an 54 

approach that used the inverse method to obtain adsorption data directly in the gradient mode [24] for 55 

the single component case. The approach, denoted the extended inverse method, eliminates the need 56 

for isocratic experiments. The approach was successfully used to estimate single component adsorption 57 

isotherms directly from overloaded gradient elution profiles. When compared to the isocratic 58 

perturbation peak method the adsorption isotherm parameters were not the same for the two methods, 59 

but the shape of the adsorption isotherm was. Both methods gave excellent predictions of elution 60 

profiles.  61 
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In all separations of practical use we have more than one component. Although the extended inverse 62 

method may not always give physically correct adsorption parameters it still have a number of important 63 

applications such as determination of adsorption isotherms for process optimization or when the 64 

classical methods fail due to extreme retention times at low modifier fractions or very large difference 65 

between components retention factors. Therefore, in this more “process-orientated” study, the aim is to 66 

extend our previous single component approach [24] to determine also competitive adsorption 67 

isotherms in gradient mode. Since the competitive case is more computer-time consuming as compared 68 

to the simpler one-component case, we also aim to develop strategies to speed up the calculations to 69 

allow the use of a regular PC. The approach was verified using gradient data from both simulated and 70 

real, experimental competitive binary separations. Finally, we will also compare the column models 71 

ability to predict gradient elution profiles if we use only isocratic (classical) or only gradient (our new 72 

method) experimental chromatograms in the invers method calculations. 73 

2 Theory 74 

The calculation of elution profiles was done using the equilibrium-dispersive model that was solved with 75 

the orthogonal collocation on finite elements method (OCFE). The optimization algorithm used in the 76 

inverse method was a modified least squares Marquardt algorithm. For more information regarding the 77 

numerical calculations see our previous paper [24]. 78 

In reversed phase chromatography the competitive Langmuir adsorption isotherm is the most commonly 79 

used model for multi-component gradient elution. E.g. it has been used to model mixtures of small 80 

molecules [7,8] and a mixture of two chemotactic peptides [11]. When the modifier dependence of the 81 

adsorption parameters are described by linear solvent strength (LSS) theory [25,26], the two component 82 

Langmuir model for component i can be written, 83 
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  (1) 84 

where q and C are the stationary and mobile phase concentration,  is the volume fraction of organic 85 

modifier in the mobile phase and S are empirical adsorption parameters that are determined 86 

experimentally. Eq. (1) was used here to simulate test data for our inverse method approach. 87 

When the adsorption energy distribution is heterogeneous the two site competitive bi-Langmuir 88 

adsorption isotherm can be used instead, 89 
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If the same relationship as in Eq. (1) is used to describe the modifier dependence of the adsorption 91 

parameters the two-component bi-Langmuir model can be written, 92 
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 (2b) 93 

where subscripts I and II refers to two adsorption sites with different adsorption energy. Eq. (2b) was 94 

successfully used in this study to model the adsorption of a cyclohexanone/cycloheptanone mixture on a 95 

C18-column in gradient elution with methanol as the organic modifier. 96 

3 Experimental 97 

3.1 Chemicals and Materials 98 

A 150 × 4.6 mm Kromasil column (AkzoNobel Eka, Bohus, Sweden) packed with C18-bonded porous 99 

silica, with an average particle diameter of 5 µm, was used. The experiments were performed on an 100 
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Agilent 1200 system (Palo Alto, CA, USA) consisting of a binary pump system, an auto-sampler with a 900 101 

µL injection loop, a diode array UV detector and a column thermostat. The column temperature was held 102 

constant at 22°C with the thermostat and the flow rate was 1.0 mL/min for all experiments.  103 

Cyclohexanone (≥99.5%) and cycloheptanone (≥99%) from Sigma-Aldrich (Steinheim, Germany), was 104 

used as solutes while dichloromethane (≥99.5%) from VWR International (Paris, France) and 2-propanol 105 

(HPLC grade) from Fisher Scientific (Loughborough, UK) were used in the pycnometry measurements. 106 

The mobile phase consisted of HPLC grade methanol from Fisher Scientific (Loughborough, UK) and de-107 

ionized water, with conductivity 18.2 MΩ cm, delivered from a Milli-Q Plus 185 water purification system 108 

from Millipore (Merck Millipore, MA, USA). 109 

3.2 Experimental Data 110 

Calibration curves for cyclohexanone and cycloheptanone were recorded at 280 nm for seven mobile-111 

phase compositions. The calibration curves were linear (R2 ≥ 0.9996 up to 0.2 M) for both substances at 112 

all mobile-phase compositions, but the slopes varied somewhat with the methanol fraction. Therefore 113 

the calibration curve that was closest to the methanol fraction in the eluent at the time the elution 114 

profile was recorded was used to convert that elution profile to concentration. The total area under the 115 

peaks in the elution profiles was adjusted so it matched the injected amount of solute. The column hold-116 

up volume was measured with pycnometry following the procedure outlined in [27]. This resulted in a 117 

column hold-up volume of 1.38 mL. 118 

The apparent average plate number was measured to 5000 for cyclohexanone and previously we 119 

measured the average plate number for cycloheptanone to 2000 [24]. In the modeling of these solutes 120 

we will use 2 000 plates for both solutes, the reason is to reduce the calculations time. It is easy to use 121 
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different efficiency for the solutes, but it would cost time and would not affect the end result. Previously 122 

we have studied isocratic separations of compounds with different efficiency between the compounds 123 

[28]. In that study the elution profiles were modeled using both different and identical efficiency for the 124 

compounds. We found no difference between the models ability to predict elution profiles as long as the 125 

least efficient solute had more than 1 000 plates. We strongly believe that the introduced errors due to 126 

this simplification could be negligible. 127 

The injection profile is sensitive to flow rate, injection volume and solute/eluent composition [29] 128 

therefore the experimental injection profile was recorded and used in the calculations. The injection 129 

profile of the overloaded injections at flow rate 1.0 mL/min was recorded with the column replaced with 130 

a zero-volume connector and was fitted to an empirical equation; see Eq. (2) in [24]. The area under the 131 

injection profile was then adjusted for the amount of injected sample. Observe that we do not use the 132 

true injection profiles entering the column inlet. Our injection profile includes both column-inlet and 133 

column-outlet effects which cannot be distinguished. However, using this experimental injection profiles 134 

will be more accurate than using the rectangular injection profiles that is frequently used. We would also 135 

like to stress that in most other studies where the experimental injection profile is accounted for, the 136 

column-inlet and column-outlet effects are not separated [21,29–31]. Finally, the inverse method 137 

incorporates such errors in the isotherm parameters, which are empirical anyway. 138 

Overloaded elution profiles were recorded by injecting 400 µL of a sample containing cyclohexanone and 139 

cycloheptanone in equal concentrations. Four different sample concentrations were used; 0.1, 0.2, 0.3 140 

and 0.4 M. Analytical peaks for the two solutes were also recorded by injecting 5 µL of 10 mM samples. 141 

This was done for seven modifier plateaus; 24, 30, 35, 40, 46, 51 and 56% methanol and four linear 142 

gradients. The gradients ran from 24% to 56% methanol and the slopes of the gradients were 1, 2, 3 and 143 
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4%/min. Before each gradient run, the column was equilibrated with the methanol fraction at the 144 

beginning of the gradient. The time it took for the gradient to reach the column inlet after the injection 145 

was initialized was 86 s. At least two replicates were done for all injections. 146 

4 Results and Discussion 147 

To verify our extended inverse method both simulated and experimental data was used. First, as a proof 148 

of concept, the competitive adsorption isotherm was determined from computer generated gradient 149 

elution profiles. Then, as a reference, the competitive adsorption isotherm for cyclohexanone and 150 

cycloheptanone were determined using only isocratic experiments at different modifier fractions with 151 

the standard inverse method. Thereafter competitive adsorption isotherm was determined for the 152 

experimental case again, but now using the extended inverse method directly from only gradient elution 153 

profiles. Finally, the results from the isocratic and gradient approach were compared. 154 

4.1 Verification Using Simulated Data 155 

Here we assumed a system with a 150 × 4.6 mm column, with hold-up time 1.5 min and with 1 000 156 

theoretical plates to simulate elution profiles. The flow rate was 1 mL/min and 400 µL samples, with 157 

concentration 0.4 M, were introduced using rectangular injection profiles. Linear gradients, with slopes 1 158 

and 4 %/min that started 0.5 min after the beginning of the injection, was employed and the modifier 159 

fraction was varied from 30% to 60%. 160 

The competitive Langmuir adsorption isotherm, Eq. (1), was used with the adsorption isotherm 161 

parameters presented in Table 1. Two elution profiles with sample concentration 0.4 M and gradient 162 

slope 1 and 4%/min was used in the inverse method. 163 
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First we considered the case where the saturation capacity is assumed to be independent of the modifier 164 

concentration. For Eq. (1) the saturation capacity qs,i for component i is, 165 
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    (3) 166 

and for this to be independent of the modifier concentration one must have that Sa,i = Sb,i. When this is 167 

assumed the six adsorption isotherm parameters could be estimated simultaneously with success, i.e., 168 

the original parameters could be obtained with at least three decimals accuracy. Then we considered the 169 

case where the constraint on the saturation capacity was removed and all eight parameters were 170 

estimated simultaneously. The optimization algorithm then failed to converge to the correct parameters, 171 

see Fig. 1 and Table 1 “Simultaneously”. This could either be due to that it gets stuck in local minima or 172 

due to that the algorithm failed to estimate the gradient of the objective function with sufficient 173 

accuracy. 174 

To prevent this, one could choose another optimization algorithm, e.g. simulating annealing [32] that 175 

does not use derivatives and can “escape” from local minima. If the problem is due to insufficient 176 

accuracy of the gradient one could instead try to increase the calculation accuracy in the ODE solver [33] 177 

which solves the set of ordinary differential equations obtained after discretization of PDEs in the OCFE 178 

method. Both these alternatives would seriously increase the calculation time and make the inverse 179 

method impractical to use. As a work around, the parameter estimation can be done in two steps:  180 

1. First the linear version of Eq. (1), with bi = 0, is used to estimate the four a-parameters from 181 

analytical injections for the two gradients, the original parameters can then obtained.  182 



10 

 

2. In the second step the four b-parameters can successfully be estimated from the two overloaded 183 

profiles described above, see Table 1. Here it was also noted that at least two elution profiles 184 

obtained with different gradients were needed for successful estimations the adsorption isotherm 185 

parameters in gradient mode. 186 

4.2 Determination of Adsorption Parameters from Experimental Isocratic Data 187 

The standard, isocratic inverse method [19] was used to estimate the competitive adsorption isotherm 188 

parameters for the mixture of cyclohexanone and cycloheptanone on seven eluents with different 189 

methanol fractions. To test if the LSS theory could be used to describe the retention factor’s methanol 190 

dependency, analytical injections were conducted at eluents with different modifier content. The ln(k) 191 

versus  plot for the analytical peaks, was linear with R2 = 0.9985 and R2 = 0.9989 for cyclohexanone and 192 

cycloheptanone, respectively. This indicates that LSS theory could be used in this case. 193 

For each of the seven investigated methanol fractions, four elution profiles with different concentrations 194 

were used to estimate the bi-Langmuir adsorption isotherm, Eq. (2a). The bi-Langmuir model fitted the 195 

isocratic data well with an average overlap of 93%. Because the LSS theory described the methanol 196 

dependence of the retention factors accurately it was also used to describe the methanol dependence of 197 

the adsorption isotherms parameters, see Fig. 2. The LSS model parameters are presented in Table 2 198 

along with the correlation coefficients. The values for the second adsorption site were omitted for 199 

cycloheptanone at the methanol fractions 0.24 and 0.40 because the association equilibrium constant 200 

was close to zero (1.3 × 10–4 and 2.1 × 10–6, respectively) at these methanol fractions. The LSS model 201 

described the methanol dependence of both solutes well. 202 
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Finally, the determined adsorption isotherms were used to predict overloaded gradient elution profiles, 203 

see Fig. 3. The agreement between experimental and calculated elution profiles was good with an 204 

average area overlap equal to 85%, which is of similar quality as other previously published results for 205 

binary gradient elution [7,8,11]. 206 

4.3 Determination of Adsorption Parameters from Experimental Gradient Data 207 

Here experimental gradient elution data was used to estimate the competitive adsorption parameters in 208 

Eq. (2b) with the extended inverse method. A simultaneous estimation of all 16 parameters was not 209 

possible if the initial values were badly chosen due to a very long calculation time. Also, as in Section 4.1, 210 

the optimization algorithm might not converge to the correct, global, solution. To prevent this, and 211 

making it possible to conduct the calculations on an ordinary computer, the parameters were estimated 212 

using a three step approach: 213 

1. In the first step, the “analytical” version of Eq. (2b), i.e., with bI = bII = 0, was used separately for 214 

cyclohexanone and cycloheptanone to get initial guesses for aI, SaI, aII and SaII. This was done by 215 

minimizing the difference between the calculated and measured retention times of analytical peaks 216 

in gradient elution. 217 

2. In the second step, initial guesses for bI, SbI, bII and SbII was determined separately for the two solutes 218 

by using the faster [1], but less accurate [34], Rouchon algorithm to solve the equilibrium-dispersive 219 

model. Two experimental profiles were used: the one with the steepest slope and the highest 220 

sample concentration (4%/min and 0.4 M), and the one with the lowest slope and sample 221 

concentration (1%/min and 0.1 M). 222 
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3. In the third and final step, all 16 parameters in Eq. (2b) were estimated from experimental, binary 223 

elution profiles obtained in gradient mode with the OCFE method with the same two experimental 224 

profiles as in step 2. 225 

The estimated adsorption isotherm parameters are presented in Table 2. Using these parameters, 226 

gradient elution profiles when injecting 400 µL of 0.3 M sample were predicted and compared to 227 

experiments for different gradients, see Fig. 4. The agreement between experimental and predicted 228 

elution profiles was very good for all gradients with an average overlap of 88%. To further test the 229 

models ability to predict elution profiles predictions for all overloaded gradient experiments presented in 230 

Section 3.2 were done. Generally, better model predictions were found for the high concentration 231 

samples, but no clear difference between gradient slopes were observed. The choice of elution profiles 232 

in the third estimation step was found to be important for the predictive power of the estimated 233 

adsorption isotherm parameters. If the highest concentration for slope 1 and 4%/min was used in the 234 

inverse method instead, the predicted profiles at concentrations below 0.2 M became markedly worse, 235 

especially for cyclohexanone. 236 

4.4. Comparison between the Isocratic and Gradient Approach 237 

Comparing the estimated adsorption isotherm parameters from the two approaches presented in Table 238 

2, we can see that they differ a lot. This was also the case for the single component case as we reported 239 

earlier [24]. One reason for the difference between the isocratic and gradient approach is that the exact 240 

shape of the gradient is not known and even if no adsorption of the modifier exists, some dispersion is 241 

present due to the chromatographic system. The gradient shape was recorded without the column 242 

attached and the beginning and the end of the gradient was indeed somewhat smoothened. There are 243 

also more effects associated in the chromatographic system which need to be accounted for in gradient 244 



13 

 

elution compared to isocratic elution, e.g. potential variations in the column hold-up time during the run, 245 

when the gradient reaches the column and potential deformation of the gradient. If the classical 246 

approach is used to estimate the adsorption parameters, all these effects must be measured accurately 247 

[17]. The extended inverse method, on the other hand, will incorporate any errors from such sources in 248 

the model by adjusting the adsorption isotherm parameters. This leads to an empirical model which can 249 

be used without as much experimental work. 250 

The shape of the competitive adsorption isotherm, with parameters from the two approaches, is plotted 251 

at three different modifier plateaus (24%, 40% and 56% methanol) for a 1:1 ratio of cyclohexanone and 252 

cycloheptanone in Fig. 5. There is very good agreement between the two adsorption isotherms at 40% 253 

methanol in the eluent; this was also the case for the 30%, 35%, 46% and 51% methanol compositions 254 

(not shown) for both solutes. The adsorption isotherms differ more for the highest (56%) and lowest 255 

(24%) methanol plateaus. It is logical that differences between the two methods can be seen at the 256 

highest and lowest modifier plateaus. In gradient elution, the highest methanol fraction is only reached 257 

when the solute is close to the column outlet, and only for the two steepest gradient slopes, while the 258 

lowest methanol fraction only exists during the injection of the sample. 259 

The ability to predict elution profiles are slightly better for the extended inverse method (88% versus 260 

85% area overlap) which is to be expected then we uses gradient experiments to determine the 261 

adsorption isotherms. 262 
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5 Conclusions 263 

We have successfully showed that the extended inverse method could estimate competitive, nonlinear 264 

adsorption isotherms directly from overloaded binary elution profiles obtained in gradient elution mode 265 

and these estimated adsorption isotherms can be used to predict gradient elution separations.  266 

The approach was first verified with a set of simulated data for the two-component competitive 267 

Langmuir adsorption isotherm where LSS theory described the modifier dependence of the adsorption 268 

isotherm parameters. The original parameters could be found with a two-step estimation procedure: 269 

First, analytical peaks were used to estimate the “analytical” version of the Langmuir equation. Then, 270 

from two overloaded elution profiles, the association equilibrium parameters were estimated. 271 

The approach was then verified using experimental gradient elution data for a mixture of cyclohexanone 272 

and cycloheptanone. Here a three-step inverse method was used to estimate the parameters in the 273 

competitive two-component bi-Langmuir adsorption isotherm. First, analytical peaks were used to 274 

estimate the “analytical” part of the bi-Langmuir equation. Then, initial guesses for all other parameters 275 

were determined separately for each solute using the faster Rouchon algorithm. Finally, the more 276 

accurate OCFE algorithm was used to fine tune the isotherm parameters. The resulting adsorption 277 

isotherm was compared with the adsorption isotherms determined using the classical isocratic approach. 278 

The adsorption isotherms parameters from the two approaches did not agree, however, the shapes of 279 

the adsorption isotherm are similar. The larges difference could be found at the highest and lowest 280 

methanol fractions. Gradient elution profiles are also better predicted if adsorption isotherm parameters 281 

from the extended inverse method are used instead of ones from the classical isocratic method. If the 282 

results here are compared to those in the companion paper [24], we see that the same conclusions can 283 

be drawn when comparing the extended inverse method with the classical isocratic approach; that the 284 
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adsorption parameters should be treated as empirical. Also, a multistep estimation procedure is needed 285 

when two or more components are considered. 286 

The three main advantages with our extended inverse method are,  287 

1. No isocratic experiments are needed, which makes it possible to determine adsorption isotherms in 288 

cases where isocratic experiments are not feasible.  289 

2. The amount of experimental work is significantly reduced compared to the classical approach. 290 

3. The model is not sensitive for errors in system parameters such as column hold-up time, gradient 291 

starting time and gradient shape. 292 

One challenge encountered with the extended inverse method is the risk that the optimization routine 293 

not converges to the correct global solution. The problem was solved by estimating the adsorption 294 

parameters in several steps, which also solved the other problem – the long calculation times when bad 295 

starting guesses were chosen for the adsorption isotherm parameters. With this approach calculations 296 

could be conducted on an ordinary computer. However, it remains to be investigated if there is an 297 

optimization algorithm which is better suited for solving this specific optimization problem. 298 

What also remains to be investigated are how the extended inverse method performs using other 299 

adsorption isotherm models, in principle the step-approach employed here should work. However, 300 

theoretical knowledge of how the parameters change with the modifier fraction does not exist for 301 

adsorption models like Tóth or Moreau. But the bi-Langmuir model, together with the LSS model, 302 

provides a flexible model that should be able to describe a lot of different adsorption isotherms, at least 303 

approximately. 304 
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In our opinion the extended inverse method is very suitable to be used as a tool in process optimization 305 

were the models ability to predict elution profiles is essential and few experiments are preferred. For 306 

more fundamental adsorption studies, classical, isocratic methods, e.g. frontal analysis or the 307 

perturbation peak method, are still recommended. 308 
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Figure captions 361 

Fig. 1: Calculated elution profiles with the original (solid lines) and “estimated simultaneously” (dashed 362 

lines) adsorption isotherm parameters for the synthetic system. 363 

Fig. 2: Methanol dependence of the competitive bi-Langmuir adsorption constants for cyclohexanone 364 

and cycloheptanone. The symbols are the parameter values found when fitting the bi-Langmuir model 365 

with the inverse method on modifier plateaus, open squares denote site I and filled circles denote site II. 366 

Solid lines represent the best fit to LSS theory. 367 

Fig. 3: Comparison between predicted, from isocratic experiments, (solid lines) and experimental 368 

(dashed lines) elution profiles at different gradient slopes for a mixture of cyclohexanone (first peak) and 369 

cycloheptanone (second peak). Sample concentration is 0.3 M and injection volume is 400 µL. 370 

Fig. 4: Comparison between predicted, from gradient experiments, (solid lines) and experimental 371 

(dashed lines) elution profiles at different gradient slopes for a mixture of cyclohexanone (first peak) and 372 

cycloheptanone (second peak). Sample concentration is 0.3 M and injection volume is 400 µL. 373 

Fig. 5: Comparison between the competitive adsorption isotherms with parameters from isocratic 374 

experiments (symbols and dashed lines) and the parameters from gradient experiments (solid lines) at 375 

three different methanol-water mobile phase compositions. The concentration ratio of cyclohexanone 376 

and cycloheptanone is 1:1. 377 



Table 1: True and estimated adsorption parameters, with 95% confidence intervals, from simulated 

elution profiles. The adsorption parameters where estimated either simultaneously or by a two-step 

approach.  

 a1 Sa,1 b1 Sb,1 a2 Sa,2 b2 Sb,2 

True 150 7.5 100 7 40 6.5 30 6 

Simultaneously 193.7 8.142 204.9 8.808 65.60 7.912 91.18 9.305 

2-step approach 150.0 7.500 99.97 6.999 40.00 6.500 29.95 5.995 

 



Table 2: Estimated adsorption parameters for cyclohexanone (C6) and cycloheptanone (C7) from real 

experimental data with the inverse method from both isocratic and gradient experiments. 

Solute aI SaI bI [M
-1] SbI aII SaII bII [M

-1] SbII 

C6 – Isocratic1 12.38 5.012 4.875 3.974 38.36 7.811 795.2 11.85 

C6 – Gradient 0.2877 0.4233 4.00 4.594 41.22 6.750 27.09 5.725 

C7 – Isocratic2 33.69 5.814 16.20 5.390 120.8 8.438 436.6 8.066 

C7 – Gradient 4.628 0.6646 73.77 2.896 112.2 8.245 170.6 10.17 
1 With R2 = 0.966, 0.986, 0.944 and 0.744. 

2 With R2 = 0.975, 0.978, 0.980 and 0.938. 
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