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Amodelmolecule, ibuprofen, was loaded in the pores ofmesoporous silica by adsorption fromnonpolar solvents
(liquid carbon dioxide and cyclohexane) and from a polar solvent (methanol). It was sufficient with a very low
concentration of ibuprofen in the nonpolar solvents to achievemaximum loading of ibuprofen in themesoporous
particles. When using liquid carbon dioxide, the pores of the mesoporous silica particles were filled completely
with ibuprofen at a lower ibuprofen concentration than similar experiments performed with cyclohexane.
When methanol was used, the maximum amount of loaded ibuprofen was never achieved. Furthermore, x-ray
scattering showed that all ibuprofen loaded into themesoporous particleswere in an amorphous state. Ibuprofen
was released from the mesoporous particles to water within a couple of minutes, regardless of solvent used for
loading. It was found that the release of ibuprofen frommesoporous silicawasmuch faster than that of crystalline
ibuprofen.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Molecules are often loaded into vehicles to transport them to a
desired position. It is advisable to have control over both the loading
process and the release of the loaded molecule. One commonly applied
technique is to use hydrophilic polymers to control the release of drugs
frommatrix formulations [1]. By this technique the release behaviour is
rather uncontrolled since it depends on the swelling and erosion of the
polymer. A different approach is to use mesoporous materials based on
silica as the vehicle.

Mesoporous silicamaterials were introduced in the 1990s andmany
applications have been suggested for this kind of materials [2,3]. Using
the mesoporous particles in delivery systems shows high potential
owing to, e.g., large surface area (N1000 m2/g), narrow pore size distri-
bution, and an open and well-defined pore system. Vallet-Regi et al.
were among the first to explore mesoporous silica as potential host for
drug molecules in an attempt to prolong the release of ibuprofen
using MCM-41 as a carrier [4]. Ibuprofen was chosen as a model mole-
cule because of its small size (5 × 12 × 8 Å) and for its fairly low
water solubility. Several authors have reported on the possibility to
load ibuprofen in mesoporous silica using different organic solvents
[5–10].

In this communication, we have focused on loading of ibuprofen in
and release from mesoporous silica of MCM-41 type. One of our aims
. This is an open access article under
was to replace organic solvents with a more environmentally friendly
and nontoxic alternative, i.e., liquid carbon dioxide. Themajor advantages
using liquid carbon dioxide as a solvent are that no solvent residues are
left in thematerial after depressurizing the system, thematerial is imme-
diately dry after removal of the solvent, and that it can be used in process-
es at relatively low pressures [11,12].

The adsorption data from the ibuprofen loading into themesoporous
silica were determined using thermal gravimetric analysis. The adsorp-
tion data were analysed and processed using amulti-step approach [13]
based on adsorption energy distribution (AED) calculations prior to the
adsorption model fittings.

The release of ibuprofen from mesoporous particles has been
studied earlier and the time to reach complete release of ibuprofen
from the silica matrix varied from 1 h up to 70 h [6,7,9,14–16].
Since the surface tension of liquid carbon dioxide is low, ibuprofen
molecules could possibly penetrate deeper into the mesoporous sil-
ica matrix than what is possible with organic solvents with higher
interfacial tension [17].

Adsorption isotherms describe the relation between adsorbed and
free concentrations of solute at a constant and specific temperature;
see supplementary information about the models used in this study.
To draw conclusions of the association equilibrium constant and mono-
layer saturation capacity of the adsorption process, an adsorption iso-
therm fitting to the adsorption data is needed. If an inappropriate
adsorption isothermmodel is used in the fitting, misleading assumptions
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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about the adsorption process could be drawn. In this section we present
an approach to reduce the risk of using a wrong model.

One tool to determine the heterogeneity of the adsorption process is
to calculate the adsorption energy distribution (AED) [18], a continuous
distribution is obtained by expansion of the Langmuir model over the
energy space:

q� cð Þ ¼
Z Kmax

Kmin

f ln Kað Þθ c;Kað Þd ln Ka ð1Þ

where f(ln K) is the AED, c is the concentration of free ibuprofen, Ka is
the association equilibrium constant, and q* is the amount adsorbed to
the surface. Kmin and Kmax are calculated from 0.1/cmax and 10/cmin,
respectively, where cmax and cmin are the highest and lowest concentra-
tion, respectively, used in the adsorption isotherm determination. θ(c,
Ka) is the local adsorption isotherm. In this case we use the Langmuir
model as local model,

θ c;Kað Þ ¼ Kac
1þ Kac

: ð2Þ

The integral of the adsorption energy distribution is the monolayer
saturation capacity, qs⁎,

Z
f ln Kað Þ ¼ q�s : ð3Þ

The raw adsorption isotherms were analysed using a three-step
approach: Scatchard plots (q*/c vs q*) were plotted to deduce the
characteristics of the adsorption process. A linear Scatchard plot is
only true for the Langmuir model. Most adsorption models, however,
result in concave Scatchard plots. From concave Scatchard plots alone,
it is impossible to deduce which adsorption model is most suitable [19].
In the second step, the AED is calculated. An AED will give information
about howmany different adsorption sites are present. Using the results
from the Scatchard plots and AED makes it possible to distinguish
Fig. 1. a). The experimental adsorption isotherms for loading ibuprofen in mesoporous SiO2 us
methanol (squares). The lines are adsorption isotherm model fitted to the raw data. b) The c
the adsorption data. The energy space was span using 400 grid points and 150 000 iterations w
between heterogeneous adsorption models, such as the bi-Langmuir
and the Tóth models. As data are discrete, the integrals are to be solved
numerically, which was done using an expectation–maximization meth-
od [20], see supplementary information formore details. Ifmore than one
possible model is left that could describe the adsorption data, F-tests are
used to deduce which model fits the data significantly best in the final
step [13].

The adsorption isotherms for loading ibuprofen in mesoporous SiO2

using three different solvents are shown in Fig. 1a. The maximum level
of adsorbed amount of ibuprofen in the particles (approximately
300 mg/g) was reached when using liquid carbon dioxide or cyclohex-
ane [21]. A lower concentration of ibuprofen in liquid carbon dioxide
(approximately 7 mM) could be used to reach this level than when
loading was performed in cyclohexane, which required an ibuprofen
concentration of 40-50 mM. It should be noted that the solubility limit
of ibuprofen in liquid carbon dioxide is 7.3 mM. In the case of using
cyclohexane or methanol as the loading solvent, a plateau level in the
adsorption isotherm was reached before the saturation limit of ibupro-
fen in the solvent. Using methanol as loading solvent allows for higher
ibuprofen concentrations; in the present study up to 51 mM. In spite
of this, the adsorbed amount of ibuprofen in the particles was sig-
nificantly lower: Only up to 20% of the accessible pores were filled. A
nonpolar solvent is required for loading of ibuprofen in mesoporous
SiO2 andwhen using a polar solvent there is a competition between ibu-
profen and the solvent to adsorb to the adsorption sites in the SiO2 pores
[21].

To gain deeper insight about the adsorption process the adsorption
isotherms were determined. In Fig. 1b, the Scatchard plots for all raw
adsorption data are present. The plot for adsorption of ibuprofen using
cyclohexane as solvent is concave; this indicates that the adsorption is
heterogeneous from an energy perspective. The plots of the other
solvents are more or less linear, indicating that the Langmuir model
could be used. TheAED, see Fig. 1c, for the adsorption using cyclohexane
(light grey) contains two distributions, one at low energy and one at
high energy. The bi-Langmuir model fitted well to these data, Fig. 1a.
The predicted association equilibrium constants are Ka,1 = 18.3 and
ing three different solvents: liquid carbon dioxide (circles), cyclohexane (diamonds) and
orresponding Scatchard plots for the adsorption data. c) The AED calculation result from
ere used to find these solutions.



Table 1
Adsorption isotherm parameters from the model fit of ibuprofen to silica using different
solvents.

Solvent Model qs,1⁎ Ka,1 qs,2⁎ Ka,2

CO2 Langmuir 4.81 54.35
Cyclohexane Bi-Langmuir 1.68 18.33 0.7552 2144
Methanol Langmuir 0.38 91.47

Fig. 2.XRPDpatterns formesoporous SiO2 and ibuprofen loaded inmesoporous SiO2 using
three different solvents. The XRPD pattern for ibuprofen is also included as a reference.

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Ib
up

ro
fe

n 
(%

)

Time (s)

  266 mg ibuprofen/g SiO2 (CO2) 
  267 mg ibuprofen/g SiO2 (cyclohexane) 
  63 mg ibuprofen/g SiO2 (methanol) 
Crystalline ibuprofen

  Ipren 

Fig. 3.Release profiles of ibuprofen frommesoporous SiO2, crystalline ibuprofen and Ipren
into water.

7A. Hillerström et al. / Colloids and Interface Science Communications 3 (2014) 5–8
Ka,2 = 2144, Table 1. The AED is unimodal whenmethanol is used, indi-
cating that Langmuir model is a good model. Inspecting the AED of liq-
uid carbon dioxide, one finds an unresolved low energy site. This
unresolved adsorption site is probably a calculation artefact due to the
noisy adsorption data, as can be observed in Fig. 1b. The predicted asso-
ciation equilibrium constants were determined to be 91.5 and 54.3
when using methanol and liquid carbon dioxide, respectively, Table 1.
To conclude, ibuprofen adsorbs strongest to the surface when cyclohex-
ane is used and weakest if liquid carbon dioxide is used. The estimated
monolayer saturation capacities from the model fit, in order from the
largest to the smallest, are 4.8, 2.4 and 0.37 mol/m2 when using liquid
carbon dioxide, cyclohexane and methanol, respectively. The reason
for the observed steep adsorption isothermslope of the ibuprofen adsorp-
tion using liquid carbon dioxide is mainly due to the large saturation ca-
pacity. One must also stress that due to the low solubility of ibuprofen
in liquid carbon dioxide, extrapolation of the adsorption isotherm param-
eters is needed. Hence, they contain some errors, even though the global
model prediction is good.

One could argue that the different solvents used would differ in
capability to disperse the silica particles. Given that the mesoporous
particles are highly porous, however, the absorption of ibuprofen will
reach completeness, regardless of solvent. In order to determine the
degree of pore filling of ibuprofen in mesoporous SiO2, the BET surface
area was measured. For a sample with the maximum level of adsorbed
amount of ibuprofen in the particles (302 mg/g, liquid carbon dioxide
was used as a loading solvent), the measured BET surface area was
62 m2/g. This value should be compared with the BET surface area of
the empty mesoporous silica material with a value of 1106 m2/g [22].
Hence, there was a significant reduction in empty SiO2 pores after the
adsorption of ibuprofen but still 6% of the area of the pores was accessi-
ble for N2 adsorption even after loading. The considerable decrease in
BET surface area shows that a substantial amount of ibuprofen has en-
tered into the SiO2 pores. Furthermore, it was confirmed by XRPD anal-
ysis that ibuprofen was not deposited on the surface of the mesoporous
particles.

In addition to filling the pores of SiO2 completely with ibuprofen, it
has previously been shown that the ibuprofen molecules in the narrow
SiO2-pores cannot crystallize since roughly only a monolayer can occu-
py the pores [23]. The noncrystalline nature of ibuprofen inmesoporous
SiO2 was confirmed with XRPD, see Fig. 2. Mesoporous SiO2 has three
peaks in the low 2θ-range, while crystalline ibuprofen has several
peaks in the measured 2θ-range. When ibuprofen was adsorbed in
mesoporous SiO2, all peaks from crystalline ibuprofen disappeared.
This was independent on the loading solvent since no peaks of ibupro-
fen were observed when using liquid carbon dioxide, cyclohexane or
methanol as loading solvent. For all the presented XRPD patterns of ibu-
profen in mesoporous SiO2 using different solvents in Fig. 2, samples
containing the maximum achieved adsorbed amount of ibuprofen in
SiO2 for each solvent were analysed.

The release profile of ibuprofen from mesoporous SiO2 in water is
shown in Fig. 3 with an initial content of 1.8mg ibuprofen when loaded
from the apolar solvents, while the content was 0.4 mgwhenmethanol
was used as solvent. The percentage of ibuprofen release was calculated
from normalizing the absorbance value with the equilibrium absor-
bance value after 24 h of release in water.

From the release experiments, it can be concluded that ibuprofenwas
released to water very fast. Already after 25–40 s, 50% of all ibuprofen in
the particles have been released to and dissolved in the water and after
200 s 90% of all ibuprofen are released to the solution. There are no dif-
ferences in the release profiles that are indicating that the loading solvent
should have any effect on the release, since the time to reach 50% release
ismore or less similar for all three solvents. One should keep inmind that
the ibuprofen loading was significantly lower using methanol as solvent,
yielding larger relative errors in the measurements.

It has been shown that the amorphous state of the drug molecule in
bulk has a higher dissolution rate in comparison to the crystalline form
[24]. Hence, onewould expect that ibuprofen loaded into themesoporous
silica particles would show a faster dissolution rate as compared to the
crystalline ibuprofen. A comparison was made by comparing dissolution
rates for a set of samples containing an equalmass of ibuprofen, but differ-
ing in structure. The results are presented in Fig. 3. A commercial product,
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Ipren, is also included in the study. The initial release from the particles is
much faster, even though complete release requires approximately the
same time for all samples. One should keep in mind, as the particle size
of the crystalline Ipren ibuprofen reference material (D[4,3] = 112 μm)
was much larger in comparison to the ibuprofen-loaded in mesoporous
SiO2 particles (D[4,3] = 9 μm), that one possible reason for the more
rapid dissolution could be the larger exposed ibuprofen area.

We have demonstrated that very low concentrations of ibuprofen in a
nonpolar solvent, i.e., liquid carbon dioxide or cyclohexane, are enough to
load the pores ofmesoporous silica particles almost completely. The ther-
modynamic process for increase of ibuprofen in the pores is probably
driven by formation of favourable hydrogen bonds between the SiO2

and the ibuprofen [21,25]. Interestingly, the solvent that required the
lowest concentration of dissolved ibuprofen to reach maximum loading
of ibuprofen in the mesoporous particles was liquid carbon dioxide.
This is most certainly due to the saturation capacity from model fittings,
Table 1. The capacity for liquid carbon dioxide is about two times higher
than that for cyclohexane and about ten times higher than for methanol.
This is promising, as liquid carbon dioxide is a so-called “green solvent”.
Carbon dioxide in the supercritical region has already been considered
as an interesting candidate for replacing organic solvents in different
pharmaceutical applications, such as controlled preparation of drug
particles by using methods where supercritical carbon dioxide is either
a solvent or an anti-solvent [12]. It is also shown that the large ibuprofen
area in mesoporous silica yields a very fast initial release as compared to
crystalline ibuprofen or from Ipren.

The Supplementary Information to this letter includes a detailed
experimental section.

The authors wish to thank Anne Wendel at Chalmers University of
Technology, Gothenburg, Sweden, for performing the BETmeasurements.
Malin Tornberg, Swerea KIMAB, while working at SP Stockholm, is ac-
knowledged for providing the mesoporous silica particles. The project
was conducted with financial support from Linde Gas/AGA AB and the
Swedish Knowledge Foundation (2004/0044). JS and JvS acknowledge
the financial support for the strategic research environment INTERACT
at Karlstad University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.colcom.2015.01.001.
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